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Far downst,ream of a sudden contaminant release in a narrow channel the concen- 
tration depends on the cloud size. This is largely determined by the longitudinal shear 
dispersion and the time of travel of the cloud. Near the source the efficiency of the shear 
dispersion and the velocity of the cloud are strongly dependent upon the source 
location across the flow. The shear dispersion is greatest when there is both strong 
shear and strong turbulent mixing (i.e. away from either the centre-line or the banks), 
while the velocity is least and the time-lag maximized for a source on the banks. The 
quantitative influence far downstream can be characterized in terms of a deficit 
variance and a centroid displacement. I n  this paper exact results are derived for these 
quantities. It is shown that, except when the banks are extremely steep, the time-lag 
has the strongest effect and the concentration far downstream of a point discharge is 
minimized when the discharge is sited a t  the bank. 

1. Introduction 
Contaminant releases into rivers or estuaries are an almost inevitable feature of 

many agricultural, domestic and industrial practices. By default, these discharges 
usually take place a t  the river bank. The question to  which the present work was 
directed was to what extent the environmental impact of a discrete contaminant 
release could be reduced by moving the point of discharge away from the bank. The 
unexpected answer is that, unless the banks are extremely steep, the bank is the best 
site for a point discharge in narrow rivers and estuaries. 

First it is necessary to define a quantitative criterion for environmental impact. 
Clearly, the greatest concentrations will be met close to the discharge where the 
contaminant has not yet become well-mixed across the flow (see figure 1 ) .  However, 
for narrow rivers and estuaries this region is quite localized to the immediate vicinity 
of the discharge. Thus, we are led to consider the concentration far downstream of the 
discharge. 

I n  the far field the contaminant is well mixed across the flow and the dispersion is 
primarily in the longitudinal direction. Moreover, the concentration distribution along 
the flow is described by a constant coefficient diffusion equation (Taylor 1953; Fischer 
1967). In  particular, the variance grows at  a constant rate and the centroid moves at  
the bulk velocity. Hence, the effects of the detailed discharge conditions can be 
characterized in terms of a deficit variance and a centroid displacement (i.e. in the 
early stages before the contaminant cloud has become well-mixed across the flow the 
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FIGURE 1. Sketch of contaminant clouds at equal time intervals for two different discharge 
positions across the flow. The e-folding time T, for mixing across the flaw scales as BZ/Hu, and 
typically corresponds to a hundred channel breadths downstream. 

shear dispersion is not yet fully efficient, and the velocity of the cloud is different from 
the bulk velocity). At a fixed distance downstream of he discharge position, the time 
of arrival of the contaminant cloud depends upon the centroid displacement. Thus, 
as a quantitative measure of the importance of the discharge conditions we employ the 
‘ adjusted deficit variance ’, with the time-lag incorporated (see appendix). The smaller 
the adjusted deficit variance, the smaller the contaminant concentration a t  all large 
distances downstream of the discharge. 

It is this two-component structure of the adjusted deficit variance that makes i t  
difficult to  make intuitive predictions of the effects of change discharge conditions. 
For example, shear dispersion depends upon the combination of cross-stream mixing 
and velocity shears. At the banks the mixing is weak, while a t  the centre-line the shear 
is weak. Thus, we can infer that  the shear dispersion will be most efficient, and therefore 
the deficit variance least, when the discharge is away from either the centre-line or the 
sides. However, the time-lag (i.e. centroid displacement) is greatest when the discharge 
is in the slow-moving water at the bank (see figure 1). To make a prediction for the 
adjusted deficit variance we need to know the relative importance of the two contri- 
butions. The subsequent mathematical analysis reveals that  the time-lag tends to 
dominate. I n  particular, the bank is the best site for a point discharge unless the 
channel is extremely steep-sided. 

2. Moment equations 
Vertical mixing of a contaminant takes place within a few tens of water depths 

downstream of the discharge. This is to  be contrasted with the hundred or so channel 
breadths in which lateral mixing takes place (Smith 1979). Thus, for simplicity we shall 
average out the vertical structure and take the contaminant diffusion equation to have 
the two-dimensional form 

(2.1) 

hate+ (u-’1~)ha,c-h~,a~c-a,(hK,a,~)  = 0,  

with hK,a,c = 0 a t  y = y-, y+, 
and c = q(y)d(x) a t  t = 0. 
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Here we have used axes moving with the bulk velocity U, h ( y )  is the water depth, u ( y )  
longitudinal velocity, K,(y), K,(y) are horizontal dispersion coefficients, y+, y- the sides 
of the channel, and q(y) is the source distribution. The effect of the vertical velocity 
shear is to make the local longitudinal dispersion coefficient K ,  be about a factor of 
40 larger than the transverse term K ,  (Elder 1959). For estuaries the neglect of tidal 
variations is justifiable only if the width is less than about 50 m (Smith 1979, equation 
2.16). 

The centroid displacement and deficit variance are direct properties of the first and 
second moments of the concentration distribution. Thus, following Aris (1956), we 
introduce the moments 

(2.2) c(P)(y, t )  = 2 p  c (2 ,  y, t )  dx ( p  = 0, 1 ,2 ,  . . .), s;", 
and we replace equations (2.1) by the x-independent equations 

(2.3) I h a p )  - a,(hK, a p ) )  = p ( u  - U) I d p - 1 )  + p ( p  - 1)  hK1c@-2), 

with hK,a,c(p) = 0 a t  y = y-, y+, 
and ~ ( 0 )  = p(y), ~ ( 1 )  = ~ ( 2 )  = ... = 0 a t  t = 0. 

An important sequel is that the cross-sectionally averaged moments @ ( t )  evolve in 
accordance with the equations 

a t w  = p(u-U)x(P-')+p(p-- l)K,c(P-Z), (2.4) 

where the averaging incorporates the local depth as a weight factor, 

e.g. U = $1:; h ( y )  u ( y )  dy with A = /:: h ( y )  dy. (2.5) 

3. Centroid displacement 
Aris (1956) showed that the full solutions to equations of the form (2.3) can be 

expressed by means of eigenfunction expansions. Unfortunately, the algebra rapidly 
becomes unwieldly. Indeed, Aris only calculated the deficit variance for the special 
case of a uniform discharge. 

Another method of solution is to take the Laplace transform of the moment equations 
(Chatwin 1970, 197G). Results for the centroid displacement, deficit variance, and 
higher moments can then be inferred from the asymptotic expansion of the Laplace 
transform near the origin. The simple form of the solutions obtained by Chatwin for 
particular discharge conditions is strongly suggestive that there should be a more 
direct and general derivation. Such a derivation is presented below. 

Here we are concerned with the moments P ,  dl), C(2) a t  large times. Thus, from 
equations ( 2 . 4 )  we infer that we only need calculate certain integral properties for 
do), ~(1). For example if c?), c'," denote the asymptotic values of the moments, then from 
equations (2 .4 )  we have 

It is these last two terms that contribute to  the deficit variance (i.e. the influence of the 
early stages of the dispersion process). 
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From equations (2.3) we infer that a large times d0)(y, t )  tends toward the constant 
value q.  Also, the time-integral of c(O)-q satisfies the equation 

and when t = 0 the integral is obviously zero. 
For large t the a, term vanishes and so we conclude that 

1; [c(O)-q] dt' - qQ(y)  for large t ,  (3.3) 

where the auxiliary function Q(y) satisfies the equation 

I (3.4) 
a,(hKza,Q) = h(q-q)/q, 

hK,a,Q= 0 a t  y =  y-,y+ and s =  0. 

Physically Q(y) can be interpreted as being the concentration distribution for a steady, 
x-independent, zero-volume source with the same discharge non-uniformity as the 
actual discharge. If we substitute the result (3.3) into equation (2.4) then we find that 
at large t the centroid displacement X is given by the formula 

(3.5) x = $ ' ) / C ( O )  = ( u-@Q,  

i.e. a weighted average of the velocity profile u(y )  with respect to Q .  

4. Deficit variance 
Proceeding to the equations for c(')(y, t ) ,  we are led to pose the representation 

Q ( y )  = CE'+qg(y),  (4.1) 

where the auxiliary function g(y) satisfies the equation 

with 

This is of the same form as equation (3.4) for Q with (q - q ) / q  replaced by (ii - u)  
Physically g(y) describes the dependence of the centre of gravity of the contaminant in 
any filament on its position across the flow (Aris 1956). Alternatively, g(y) is the shape 
factor for longest persisting concentration variants across the flow (Taylor 1953). 

Next, we infer from equation (2.3) that  the time integral of C(~)-C:) satisfies the 

with 

and J 
(4.3) 
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Making use of the above results (3.3), (3.51, we deduce that for large t 

where the function R(y) satisfies the equation 

with 

a,(hK, a,R) = hg + h{(u - U )  Q - (u-ii) Q} ,  

hK,a,R = 0 at  y = y - , y + .  
(4.5) 

If we multiply equation (4.5) by g(y)  and integrate by parts with respect to y from 
y -  to y+,  then we can derive the identity 

- 
(u--U)R = - g 2 + ( u - E ) Q g .  (4.6) 

This enables us to eliminate the occurrence of R ( y )  in the asymptotic version of 
equation (3.1) - 

iP)/iYJ) - 2 t { ( ~ - U ) g + E , } -  2 ~ + 2 ( u - U ) Q g + 2 K 1 Q .  (4.7) 

The 2t coeficient gives us a formula for the lateral shear contribution 

D = ( u - U ) g  (4.8) 

to the total longitudinal dispersion coefficient D + K ,  (Aris 1956, equation (40)). 

concentration distribution ; 
The variance is defined in terms of the second moment relative to  the centroid of the 

(4.9) 

Thus, from equations (4.7), (3.5) we conclude that the deficit variance, relative to  the 
constant dispersion coefficient prediction 2[D + El] t ,  is given by 

V = (co /ce)  - ( C ( 1 ) / ~ ( 0 ) ) 2 *  

A V  = 2 2 -  2 ( ~  - U )  Qg - 2K,+ [(u - U) &I2. (4.10) 

For the important special case in which the discharge is uniform, we have Q = 0, and 
equation (4.10) gives the deficit variance as being 2 p i n  agreement with equation (3.8) 
of Chatwin (1970). 

The centroid displacement means that a fixed distance downstream of the discharge 
position the contaminant cloud arrives a t  a time X/U ahead of the constant diffusivity 
prediction. In this case the appropriate measure of the deficit variance is the ‘adjusted 
deficit variance ’ 

‘ A V ’  = A V + 2 ( D + K l ) X / U  (4.11) 

(i.e. the observed variance a t  a fixed position must account for the observed time of 
arrival). 

5. Auxiliary equations 
The usefulness of the above formula (3.4), (4.8), (4.11) for the centroid displacement 

X ,  the dispersion coefficient D, and the adjusted deficit variance ‘AV’ ,  depends upon 
the ease with which we can calculate the auxiliary functions Q ( y ) ,  q ( y ) .  I n  this section 
we present general solutions valid for arbitrary depth profiles and source distributions. 



48 R.  Smith 

First, from equation (3.4) we note that the field equation and boundary conditions 
are satisfied if 

where a_, a, are the fractional cross-sectional areas of the channel from the y -  and y+ 

Preserving the symmetry with respect to y - ,  y +  we find that a further integration of 
equation (5.1) yields the solution 

Using integration by parts and the definitions (5.2) we can verify that 0 = 0. To obtain 
the solution for g ( y )  we simply replace (q - tj)/?j by u - U: 

Substituting the expression (5.3) for Q into equation (3.5) and performing two 
integrations by parts, we find that the centroid displacement is given by the formula 

Thus, as was remarked by Aris (1956, 3 4) for the special case of pipe flow, when there 
is a point source the dependence of X upon the source position is identical to g ( y ) .  

Next, substituting for g ( y )  into equation (4.8) and integrating by parts, we obtain 
the equation 

This result agrees with the work of Fischer (1967) and clearly demonstrates the 
positivity of the shear dispersion coefficient D. 

Finally, we evaluate the turbulence and shear contributions 
- 

-2K,& and - 2 ( ~ - ~ ) & g  

to the deficit variance. By analogy with the definitions (5.2),  we introduce the fractional 
turbulence and shear dispersion coefficients k-, k,, d-, d,: 
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This notation enables us to write 

and to reduce the lengthy expression for (u - U) Qg to the neat result 

6. Point discharges 
For a point discharge we have the delta-function description 

hq/a = A S ( y  - yo), (6 .1)  

where yois thedischarge position. Thus, theintegrals (5.5), (5.9), (5.10) can besirnplified 
still further and we find that the adjusted deficit variance (4.11) is given by 

It might be thought that when averaged with respect to different discharge positions 
the above formula should yield the uniform discharge result 2?. However, as a con- 
sequence of the centroid displacement g(yo), the average of ‘ A V ’  is actually 3 2 .  

As we vary the discharge position we have 

At the respective sides of the channel the - and + functions are zero. Thus, the 
adjusted deficit variance has an extremum when the discharge is a t  either bank. 

To investigate the nature of the extremum we take a further derivative 

l 2  h(u-E)dy‘ +h{Kl(y)-(D+Kl)u/G}.  (6.4) 
1 d  
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FIGURE 2. The adjusted deficit variance as a function of 
discharge position for a triangular channel. 

If the water depth is non-zero at the sides, then for the second derivative of ‘AV’  to be 
negative it suffices that u/ii should exceed K l / ( D + x l ) .  This is a minor constraint 
since the shear dispersion coefficient D associated with the lateral shear is usually 
several orders of magnitude greater than the vertical shear coefficient K ,  (Fisher 1967). 
Hence, in this case the adjusted deficit variance is a maximum, and the channel sides 
are undesirable locations for a sudden contaminant discharge. 

Usually the water depth tends to zero at  the sides and a more careful argument is 
needed. The local turbulent diffusivities are proportional to the product of the local 
water depth and longitudinal velocity (Elder 1959). This implies that the diffusivities 
vary as the three-halves power of the water depth, and the longitudinal velocity as the 
square-root of the depth: 

K ,  = h%Z,/G, u = h%i/S. (6.5) 

Using these representations in equation (6.4) and taking the limit as the water depth 
tends to zero, we deduce that the adjusted deficit variance is at  a minimum provided 
that the depth gradient h‘ satisfies the inequality 

Thus, for sufficiently gentle sloping banks we have the important conclusion that the 
channel sides are the best possible sites for a sudden discharge. For steeper-sided 
channels the conclusion is reversed, as indeed it must be in order to be compatible 
with the earlier results for vertically-sided channels. 

7. Triangular channel 
In  order to illustrate the dependence of the adjusted deficit variance (6.2) upon the 

source position, we take the depth profile to be an isosceles triangle with width 2B and 
maximum depth H :  

h ( y )  = (y/B) H for 0 < y < R, ( 7 . 1 )  
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with a symmetrical expression valid for B < y < 2B. For the diffusivity model we take 

K ,  = 6 h , ,  K 2  = 0*15hu,, (7.2) 

where u*(y) is the friction velocity (Fischer 1973). If we assume that there is a constant 
ratio y (about 0.1) between u,(y) and u(y), then it follows that the diffusivities and 
velocity profile take the form given by equations (6.5): 

K ,  = 0*15yHii~(y /B)~ ,  u = ii;(y/B)*. (7.3) 

In  particular, it  follows that ii‘, = 6yHU(t). (7.4) 

It is now a straightforward but lengthy task to evaluate all the necessary integrals 
(for other topographies the results would be numerically similar but not as simple): 

a- = &(Y/B)~, 

h(u - U) dy = &BHU[(y/B)k - (y/B)’], 

0 2  

-=- 32 ( - B)2i71, 4 D -  B2ii 
5250.15yH 4725 yH 

2d- = 15(y/B)g- 3 5 ( ~ / B ) ~ +  2l(y/B)ft, (7.9) 

(7.10) 

‘AV’ = p.a- 357 + 100[9(yo/B)2- 28(y0/B)8 + 24(yo/’B)]). (7.11) 

We recall that yo denotes the position of the point discharge. Equation (7.8) explicitly 
demonstrates that D is much greater than K ,  (Fischer 1967). For example, 

if B/H = 9 and y = 0.1 then D / a l  = 55. (7.12) 

Thus, the key result (7.11) for the adjusted deficit variance has been simplified by the 
neglect of all R1 terms. 

A remarkable outcome of the above analysis is that when the discharge is close to 
the bank the adjusted deficit variance is negative. This means that at  large distances 
downstream of the discharge, the variance actually exceeds the constant dispersion 
coefficient prediction. The magnitude of the extra variance is also remarkable. The 
e-folding distance for the decay of transverse concentration variations is 

X ,  = 2*1B2/yH = 7.9($)3 (7.13) 

(Smith 1979, equation (2.16)). Cross-sectional mixing can be regarded as having been 
established after about three times this distance. Depending upon whether the 
discharge is at the bank, cross-sectionally uniform, or at the centre-line, we find that 
the total variance 6DXe/ii - ‘A V’  at this stage is given by 

20.6?, 7 - 1 2 ,  4-58.  (7.14) 

When converted into concentration predictions, by taking the inverse square root of 
the variance (see appendix), there is over a factor of two between the extremes. Thus, 
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there is a considerable premium in choosing the right position for a contaminant 
discharge. 

The inequality (6.6) shows that if the channel bank is sufficiently steep, then it 
ceases t o  be the best site for a point discharge. An estimate of the necessary steepness 
can be obtained by using the above results (7.4),  (7.8) for R2 and D :  

(h’) < 21(H/B)? (7.15) 

Thus, it is only for extremely steep-sided channels that  the inequality is violated. I n  
this unusual circumstance the best position for a point discharge could be determined 
by finding the roots of equation (6.3).  However, as a general rule we conclude that in 
narrow rivers or estuaries the best that can be done with a contaminant release is to 
follow the age-old practice of making the discharge a t  the bank. 

The author wishes to thank B.P. and the Royal Society for financial support. 

Appendix. Concentration distribution 
I n  practice i t  is not the cross-sectionally averaged concentration C which is moni- 

tored, but rather the concentration a t  some position close to  the side of the channel. 
Thus, the observed time of arrival of the contaminant cloud and the observed variance 
will differ from the predictions made in the above paper. This leads to the crucial 
question as to whether the concept of the best discharge site depends upon the mode of 
observation? Fortunately, it is easy to  demonstrate that  the relative performance of 
different discharge sites remains the same independently of the monitoring position 
across the flow. 

For a sudden discharge the concentration distribution eventually beconies Gaussian. 
The details of the approach tothis asymptotic state have been investigated by Chatwin 
(1970). In  terms of the variance V and the centroid displacement X ,  Chatwin’s 
equation (2.19) can be written 

with He,(z )  = 2, He,@) = z 3 -  32. 

2 = ( x - Z t - X ) / V 4 ,  
V = 2 [ D + E 1 ] t - A V .  

Here g(y) is the shape factor for the concentration variations across the flow (see 
equations (4.2), (5.4)).  We note that the coefficient of the skewness term He, involves 
the velocity profile (u - U) and the shape factor g(y), and does not depend upon the 
initial conditions. Thus, a t  large times the influence of t,he discharge site is via the 
deficit variance A V  and the centroid displacement X .  

From equation (A 1) it follows that at positions ym across the flow the apparent 
centroid position and variance are given by 

zt+X+g(Ym), v-g(Ym)2- (A 2) 

This means that the maximum concentration is experienced at, a time g(ym)/ii different 
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from that for C. The variance at this time of maximum concentration is given by 

where x, is the monitoring position along the channel. Clearly, the dependence upon 
the discharge conditions (i.e. upon A V  and X) is independent of the observation 
position. Varying y, is equivalent to measuring the cross-sectionally averaged con- 
centration a t  positions x, displaced upstream or downstream accordingly as g( y,) 
is positive or negative. 
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